Strong laws for weighted sums of widely orthant dependent random variables and applications

Abstract: In this study, the strong law of large numbers and the convergence rate for weighted sums of non-identically distributed widely orthant dependent random variables are established. As applications, the strong consistency for weighted estimator in nonparametric regression model and the rate of strong consistency for least-squares estimator in multiple linear regression model are obtained. Some numerical simulations are also provided to verify the validity of the theoretical results.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Strong laws for weighted sums of widely orthant dependent random variables and applications ; volume:22 ; number:1 ; year:2024 ; extent:14
Open mathematics ; 22, Heft 1 (2024) (gesamt 14)

Creator
Zhu, Yong
Wang, Wei
Chen, Kan

DOI
10.1515/math-2024-0027
URN
urn:nbn:de:101:1-2408311547159.723502394643
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:38 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Zhu, Yong
  • Wang, Wei
  • Chen, Kan

Other Objects (12)