T‐2 Toxin‐Mediated β‐Arrestin‐1 O‐GlcNAcylation Exacerbates Glomerular Podocyte Injury via Regulating Histone Acetylation

Abstract: T‐2 toxin causes renal dysfunction with proteinuria and glomerular podocyte damage. This work explores the role of metabolic disorder/reprogramming‐mediated epigenetic modification in the progression of T‐2 toxin‐stimulated podocyte injury. A metabolomics experiment is performed to assess metabolic responses to T‐2 toxin infection in human podocytes. Roles of protein O‐linked‐N‐acetylglucosaminylation (O‐GlcNAcylation) in regulating T‐2 toxin‐stimulated podocyte injury in mouse and podocyte models are assessed. O‐GlcNAc target proteins are recognized by mass spectrometry and co‐immunoprecipitation experiments. Moreover, histone acetylation and autophagy levels are measured. T‐2 toxin infection upregulates glucose transporter type 1 (GLUT1) expression and enhances hexosamine biosynthetic pathway in glomerular podocytes, resulting in a significant increase in β‐arrestin‐1 O‐GlcNAcylation. Decreasing β‐arrestin‐1 or O‐GlcNAc transferase (OGT) effectively prevents T‐2 toxin‐induced renal dysfunction and podocyte injury. Mechanistically, O‐GlcNAcylation of β‐arrestin‐1 stabilizes β‐arrestin‐1 to activate the mammalian target of rapamycin (mTOR) pathway as well as to inhibit autophagy during podocyte injury by promoting H4K16 acetylation. To sum up, OGT‐mediated β‐arrestin‐1 O‐GlcNAcylation is a vital regulator in the development of T‐2 toxin‐stimulated podocyte injury via activating the mTOR pathway to suppress autophagy. Targeting β‐arrestin‐1 or OGT can be a potential therapy for T‐2 toxin infection‐associated glomerular injury, especially podocyte injury.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
T‐2 Toxin‐Mediated β‐Arrestin‐1 O‐GlcNAcylation Exacerbates Glomerular Podocyte Injury via Regulating Histone Acetylation ; day:11 ; month:12 ; year:2023 ; extent:17
Advanced science ; (11.12.2023) (gesamt 17)

Creator
Li, Tushuai
Sun, Wenxue
Zhu, Shenglong
He, Chengsheng
Chang, Tong
Zhang, Jie
Chen, Yongquan

DOI
10.1002/advs.202307648
URN
urn:nbn:de:101:1-2023121214242698235195
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:26 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Li, Tushuai
  • Sun, Wenxue
  • Zhu, Shenglong
  • He, Chengsheng
  • Chang, Tong
  • Zhang, Jie
  • Chen, Yongquan

Other Objects (12)