Artikel

Estimating case-based learning

We propose a framework in order to econometrically estimate case-based learning and apply it to empirical data from twelve 2 × 2 mixed strategy equilibria experiments. Case-based learning allows agents to explicitly incorporate information available to the experimental subjects in a simple, compact, and arguably natural way. We compare the estimates of case-based learning to other learning models (reinforcement learning and self-tuned experience weighted attraction learning) while using in-sample and out-of-sample measures. We find evidence that case-based learning explains these data better than the other models based on both in-sample and out-of-sample measures. Additionally, the case-based specification estimates how factors determine the salience of past experiences for the agents. We find that, in constant sum games, opposing players' behavior is more important than recency and, in non-constant sum games, the reverse is true.

Sprache
Englisch

Erschienen in
Journal: Games ; ISSN: 2073-4336 ; Volume: 11 ; Year: 2020 ; Issue: 3 ; Pages: 1-25 ; Basel: MDPI

Klassifikation
Wirtschaft
Microeconomic Behavior: Underlying Principles
Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
Computational Techniques; Simulation Modeling
Noncooperative Games
Data Collection and Data Estimation Methodology; Computer Programs: Other Computer Software
Thema
behavioral game theory
case-based decision theory
learning

Ereignis
Geistige Schöpfung
(wer)
Guilfoos, Todd
Pape, Andreas D.
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2020

DOI
doi:10.3390/g11030038
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Guilfoos, Todd
  • Pape, Andreas D.
  • MDPI

Entstanden

  • 2020

Ähnliche Objekte (12)