Arbeitspapier

Fast cluster bootstrap methods for linear regression models

Efficient computational algorithms for bootstrapping linear regression models with clustered data are discussed. For ordinary least squares (OLS) regression, a new algorithm is provided for the pairs cluster bootstrap, along with two algorithms for the wild cluster bootstrap. One of these is a new way to express an existing method. For instrumental variables (IV) regression, an efficient algorithm is provided for the wild restricted efficient cluster (WREC) bootstrap. All computations are based on matrices and vectors that contain sums of squares and cross-products for the observations within each cluster, which have to be computed just once before the bootstrap loop begins. Monte Carlo experiments are used to study the finite-sample properties of bootstrap Wald tests for OLS regression and of WREC bootstrap tests for IV regression.

Sprache
Englisch

Erschienen in
Series: Queen’s Economics Department Working Paper ; No. 1465

Klassifikation
Wirtschaft
Hypothesis Testing: General
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
Thema
clustered data
cluster-robust variance estimator
CRVE
robust inference
wild cluster bootstrap
WCR bootstrap
pairs cluster bootstrap
wild restricted efficient cluster bootstrap
WREC bootstrap
bootstrap Wald test

Ereignis
Geistige Schöpfung
(wer)
MacKinnon, James G.
Ereignis
Veröffentlichung
(wer)
Queen's University, Department of Economics
(wo)
Kingston (Ontario)
(wann)
2021

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • MacKinnon, James G.
  • Queen's University, Department of Economics

Entstanden

  • 2021

Ähnliche Objekte (12)