Hopf bifurcation and Turing instability in a diffusive predator-prey model with hunting cooperation

Abstract: In this article, we study Hopf bifurcation and Turing instability of a diffusive predator-prey model with hunting cooperation. For the local model, we analyze the stability of the equilibrium and derive conditions for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solution by the center manifold and the normal form theory. For the reaction-diffusion model, first it is shown that Turing instability occurs, then the direction and stability of the Hopf bifurcation is reached. Our results show that hunting cooperation plays a crucial role in the dynamics of the model, that is, it can be beneficial to the predator population and induce the rise of Turing instability. Finally, numerical simulations are performed to visualize the complex dynamic behavior.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Hopf bifurcation and Turing instability in a diffusive predator-prey model with hunting cooperation ; volume:20 ; number:1 ; year:2022 ; pages:986-997 ; extent:12
Open mathematics ; 20, Heft 1 (2022), 986-997 (gesamt 12)

Urheber
Miao, Liangying
He, Zhiqian

DOI
10.1515/math-2022-0474
URN
urn:nbn:de:101:1-2022091314074350513355
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:32 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Miao, Liangying
  • He, Zhiqian

Ähnliche Objekte (12)