Scaling laws and emergent effects for plasticity in heterogeneous materials

Abstract: We revisit models that describe the propagation of dislocations through random heterogeneous media. We derive a fully nonlinear model describing the evolution of a dislocation in the line tension approximation in a homogeneous medium with random obstacles. We investigate the pinning (the dislocation becomes stuck) and depinning behavior (the dislocation line swipes over a strictly positive mean area per time unit) of this model for dislocation glide. We show that our model obeys Taylor Scaling, i.e., the critical pinning force scales like the square root of the concentration of obstacles. As the energy dissipation of dislocations is not purely viscous, we need to extend the theory of viscosity solutions to treat partial differential inclusions arising while modeling dry friction kinetics. The analysis of the pinning behavior is based on explicit construction of sub- and supersolutions and hence the existence of a comparison principle is fundamental for our study. Finally, we explore numerical methods for a relaxed model of dislocation slip

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Universität Freiburg, Dissertation, 2021

Classification
Mathematik
Keyword
Versetzungsbewegung
Viskositätslösung

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2021
Creator

DOI
10.6094/UNIFR/219085
URN
urn:nbn:de:bsz:25-freidok-2190859
Rights
Kein Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:47 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Time of origin

  • 2021

Other Objects (12)