L1regularization facilitates detection of cell type-specific parameters in dynamical systems

Abstract: Motivation

A major goal of drug development is to selectively target certain cell types. Cellular decisions influenced by drugs are often dependent on the dynamic processing of information. Selective responses can be achieved by differences between the involved cell types at levels of receptor, signaling, gene regulation or further downstream. Therefore, a systematic approach to detect and quantify cell type-specific parameters in dynamical systems becomes necessary.

Results

Here, we demonstrate that a combination of nonlinear modeling with L1 regularization is capable of detecting cell type-specific parameters. To adapt the least-squares numerical optimization routine to L1 regularization, sub-gradient strategies as well as truncation of proposed optimization steps were implemented. Likelihood-ratio tests were used to determine the optimal regularization strength resulting in a sparse solution in terms of a minimal number of cell type-specific parameters that is in agreement with the data. By applying our implementation to a realistic dynamical benchmark model of the DREAM6 challenge we were able to recover parameter differences with an accuracy of 78%. Within the subset of detected differences, 91% were in agreement with their true value. Furthermore, we found that the results could be improved using the profile likelihood. In conclusion, the approach constitutes a general method to infer an overarching model with a minimum number of individual parameters for the particular models

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Bioinformatics. - 32, 17 (2016) , i718-i726, ISSN: 1367-4803

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2025
Urheber
Beteiligte Personen und Organisationen
Dynamische Prozesse in den Lebenswissenschaften

DOI
10.1093/bioinformatics/btw461
URN
urn:nbn:de:bsz:25-freidok-1326956
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:36 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2025

Ähnliche Objekte (12)