Arbeitspapier

Best-response dynamics, playing sequences, and convergence to equilibrium in random games

We show that the playing sequence-the order in which players update their actions-is a crucial determinant of whether the best-response dynamic converges to a Nash equilibrium. Specifically, we analyze the probability that the best-response dynamic converges to a pure Nash equilibrium in random n-player m-action games under three distinct playing sequences: clockwork sequences (players take turns according to a fixed cyclic order), random sequences, and simultaneous updating by all players. We analytically characterize the convergence properties of the clockwork sequence best-response dynamic. Our key asymptotic result is that this dynamic almost never converges to a pure Nash equilibrium when n and m are large. By contrast, the random sequence best- response dynamic converges almost always to a pure Nash equilibrium when one exists and n and m are large. The clockwork best-response dynamic deserves particular attention: we show through simulation that, compared to random or simultaneous updating, its convergence properties are closest to those exhibited by three popular learning rules that have been calibrated to human game-playing in experiments (reinforcement learning, fictitious play, and replicator dynamics).

Sprache
Englisch

Erschienen in
Series: LEM Working Paper Series ; No. 2021/02

Klassifikation
Wirtschaft
Existence and Stability Conditions of Equilibrium
Noncooperative Games
Stochastic and Dynamic Games; Evolutionary Games; Repeated Games
Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
Thema
Best-response dynamics
equilibrium convergence
random games
learning models in games

Ereignis
Geistige Schöpfung
(wer)
Heinrich, Torsten
Jang, Yoojin
Mungo, Luca
Pangallo, Marco
Scott, Alex
Tarbush, Bassel
Wiese, Samuel
Ereignis
Veröffentlichung
(wer)
Scuola Superiore Sant'Anna, Laboratory of Economics and Management (LEM)
(wo)
Pisa
(wann)
2021

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Heinrich, Torsten
  • Jang, Yoojin
  • Mungo, Luca
  • Pangallo, Marco
  • Scott, Alex
  • Tarbush, Bassel
  • Wiese, Samuel
  • Scuola Superiore Sant'Anna, Laboratory of Economics and Management (LEM)

Entstanden

  • 2021

Ähnliche Objekte (12)