Arbeitspapier
Using Machine Learning for Measuring Democracy: An Update
We provide a comprehensive overview of the literature on the measurement of democracy and present an extensive update of the Machine Learning indicator of Gründler and Krieger (2016, European Journal of Political Economy). Four improvements are particularly notable: First, we produce a continuous and a dichotomous version of the Machine Learning democracy indicator. Second, we calculate intervals that reflect the degree of measurement uncertainty. Third, we refine the conceptualization of the Machine Learning Index. Finally, we largely expand the data coverage by providing democracy indicators for 186 countries in the period from 1919 to 2019.
- Sprache
-
Englisch
- Erschienen in
-
Series: CESifo Working Paper ; No. 8903
- Klassifikation
-
Wirtschaft
Multiple or Simultaneous Equation Models: Classification Methods; Cluster Analysis; Principal Components; Factor Models
Index Numbers and Aggregation; Leading indicators
Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
Institutions and the Macroeconomy
Capitalist Systems: Political Economy
- Thema
-
data aggregation
democracy indicators
machine learning
measurement issues
regime classifications
support vector machines
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Gründler, Klaus
Krieger, Tommy
- Ereignis
-
Veröffentlichung
- (wer)
-
Center for Economic Studies and Ifo Institute (CESifo)
- (wo)
-
Munich
- (wann)
-
2021
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Gründler, Klaus
- Krieger, Tommy
- Center for Economic Studies and Ifo Institute (CESifo)
Entstanden
- 2021