Arbeitspapier

Non-negativity conditions for the hyperbolic GARCH model

In this article we derive conditions which ensure the non-negativity of the conditional variance in the Hyperbolic GARCH(p; d; q) (HYGARCH) model of Davidson (2004). The conditions are necessary and sufficient for p < 2 and sufficient for p > 2 and emerge as natural extensions of the inequality constraints derived in Nelson and Cao (1992) for the GARCH model and in Conrad and Haag (2006) for the FIGARCH model. As a by-product we obtain a representation of the ARCH(1) coefficients which allows computationally efficient multi-step-ahead forecasting of the conditional variance of a HYGARCH process. We also relate the necessary and sufficient parameter set of the HYGARCH to the necessary and sufficient parameter sets of its GARCH and FIGARCH components. Finally, we analyze the effects of erroneously fitting a FIGARCH model to a data sample which was truly generated by a HYGARCH process. An empirical application of the HYGARCH(1; d; 1) model to daily NYSE data illustrates the importance of our results.

Sprache
Englisch

Erschienen in
Series: KOF Working Papers ; No. 162

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Model Evaluation, Validation, and Selection
Forecasting Models; Simulation Methods
Thema
Inequality constraints
fractional integration
long memory GARCH processes
ARCH-Modell
Modell-Spezifikation
Zeitreihenanalyse
Theorie

Ereignis
Geistige Schöpfung
(wer)
Conrad, Christian
Ereignis
Veröffentlichung
(wer)
ETH Zurich, KOF Swiss Economic Institute
(wo)
Zurich
(wann)
2007

DOI
doi:10.3929/ethz-a-005390226
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Conrad, Christian
  • ETH Zurich, KOF Swiss Economic Institute

Entstanden

  • 2007

Ähnliche Objekte (12)