On partial isometries with circular numerical range

Abstract: In their LAMA 2016 paper Gau, Wang and Wu conjectured that a partial isometry A acting on ℂn cannot have a circular numerical range with a non-zero center, and proved this conjecture for n ≤ 4. We prove it for operators with rank A = n − 1 and any n. The proof is based on the unitary similarity of A to a compressed shift operator SB generated by a finite Blaschke product B. We then use the description of the numerical range of SB as intersection of Poncelet polygons, a special representation of Blaschke products related to boundary interpolation, and an explicit formula for the barycenter of the vertices of Poncelet polygons involving elliptic functions.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
On partial isometries with circular numerical range ; volume:8 ; number:1 ; year:2021 ; pages:176-186 ; extent:11
Concrete operators ; 8, Heft 1 (2021), 176-186 (gesamt 11)

Creator
Wegert, Elias
Spitkovsky, Ilya

DOI
10.1515/conop-2020-0121
URN
urn:nbn:de:101:1-2410301539006.314421098725
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:23 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Wegert, Elias
  • Spitkovsky, Ilya

Other Objects (12)