Probabilistic reversal learning deficits in patients with methamphetamine use disorder - a longitudinal pilot study

Abstract: Methamphetamine use disorder (MUD) is increasing worldwide and commonly associated with learning deficits. Little is known the about underlying trajectories, i.e., how the affected higher-order cognitive functions develop over time and with respect to abstinence and relapse. A probabilistic reversal learning (PRL) paradigm was implemented to uncover the microstructure of impulsive choice and maladaptive learning strategies in 23 patients with MUD in comparison with 24 controls. Baseline data revealed fewer optimal choices and a pattern of altered learning behavior from negative and positive feedback in patients suggesting impairments in flexibly-adapting behavior to changes of reward contingencies. Integrating longitudinal data from a follow-up assessment after 3 months of specific treatment revealed a group-by-time interaction indicating a normalization of these cognitive impairments in patients with MUD. In summary, our study demonstrates behavioral correlates of maladaptive decision-making processes in patients with MUD, which may recover after 3 months of MUD-specific therapy paving the way for further learning-based interventions. Limited by a small sample size, the results of this pilot study warrant replication in larger populations

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Frontiers in psychiatry. - 11 (2020) , 588768, ISSN: 1664-0640

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2021
Urheber
Pilhatsch, Maximilian
Pooseh, Shakoor
Junke, Alexandra
Kohno, Milky
Petzold, Johannes
Sauer, Cathrin
Smolka, Michael

DOI
10.3389/fpsyt.2020.588768
URN
urn:nbn:de:bsz:25-freidok-2206171
Rechteinformation
Kein Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:25 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2021

Ähnliche Objekte (12)