Efficient Nonparametric Causal Inference with Missing Exposure Information

Abstract: Missing exposure information is a very common feature of many observational studies. Here we study identifiability and efficient estimation of causal effects on vector outcomes, in such cases where treatment is unconfounded but partially missing. We consider a missing at random setting where missingness in treatment can depend not only on complex covariates, but also on post-treatment outcomes. We give a new identifying expression for average treatment effects in this setting, along with the efficient influence function for this parameter in a nonparametric model, which yields a nonparametric efficiency bound. We use this latter result to construct nonparametric estimators that are less sensitive to the curse of dimensionality than usual, e. g. by having faster rates of convergence than the complex nuisance estimators they rely on. Further we show that these estimators can be root-n consistent and asymptotically normal under weak nonparametric conditions, even when constructed using flexible machine learning. Finally we apply these results to the problem of causal inference with a partially missing instrumental variable.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Efficient Nonparametric Causal Inference with Missing Exposure Information ; volume:16 ; number:1 ; year:2020 ; extent:11
The international journal of biostatistics ; 16, Heft 1 (2020) (gesamt 11)

Creator
Kennedy, Edward H.

DOI
10.1515/ijb-2019-0087
URN
urn:nbn:de:101:1-2502181215128.521670802375
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:32 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Kennedy, Edward H.

Other Objects (12)