Arbeitspapier

On weak Brownian motions of arbitrary order

We show the existence, for any k E N, of processes which have the same k-marginals as Brownian motion, although they are not Brownian motions. For k = 4, this proves a conjecture of Stoyanov. The law P' of such a weak Brownian motion of order k can be constructed to be equivalent to Wiener measure P' on c [O, 1]. On the other hand, there are weak Brownian motions of arbitrary order whose law is singular to Wiener measure. We also show that, for any e > 0, there are weak Brownian motions whose law coincides with wiener measure outside of any interval of length e.

Sprache
Englisch

Erschienen in
Series: SFB 373 Discussion Paper ; No. 1999,89

Klassifikation
Wirtschaft
Thema
Brownian motion
weak Brownian motion
weak martingale
marginals
Volterra kernel

Ereignis
Geistige Schöpfung
(wer)
Föllmer, Hans
Wu, Ching-Tang
Yor, Marc
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
(wo)
Berlin
(wann)
1999

Handle
URN
urn:nbn:de:kobv:11-10046769
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Föllmer, Hans
  • Wu, Ching-Tang
  • Yor, Marc
  • Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

Entstanden

  • 1999

Ähnliche Objekte (12)