Arbeitspapier
On weak Brownian motions of arbitrary order
We show the existence, for any k E N, of processes which have the same k-marginals as Brownian motion, although they are not Brownian motions. For k = 4, this proves a conjecture of Stoyanov. The law P' of such a weak Brownian motion of order k can be constructed to be equivalent to Wiener measure P' on c [O, 1]. On the other hand, there are weak Brownian motions of arbitrary order whose law is singular to Wiener measure. We also show that, for any e > 0, there are weak Brownian motions whose law coincides with wiener measure outside of any interval of length e.
- Sprache
-
Englisch
- Erschienen in
-
Series: SFB 373 Discussion Paper ; No. 1999,89
- Klassifikation
-
Wirtschaft
- Thema
-
Brownian motion
weak Brownian motion
weak martingale
marginals
Volterra kernel
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Föllmer, Hans
Wu, Ching-Tang
Yor, Marc
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
- (wo)
-
Berlin
- (wann)
-
1999
- Handle
- URN
-
urn:nbn:de:kobv:11-10046769
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Föllmer, Hans
- Wu, Ching-Tang
- Yor, Marc
- Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
Entstanden
- 1999