Artikel

State space models and the KALMAN-filter in stochastic claims reserving: Forecasting, filtering and smoothing

This paper gives a detailed overview of the current state of research in relation to the use of state space models and the Kalman-filter in the field of stochastic claims reserving. Most of these state space representations are matrix-based, which complicates their applications. Therefore, to facilitate the implementation of state space models in practice, we present a scalar state space model for cumulative payments, which is an extension of the well-known chain ladder (CL) method. The presented model is distribution-free, forms a basis for determining the entire unobservable lower and upper run-off triangles and can easily be applied in practice using the Kalman-filter for prediction, filtering and smoothing of cumulative payments. In addition, the model provides an easy way to find outliers in the data and to determine outlier effects. Finally, an empirical comparison of the scalar state space model, promising prior state space models and some popular stochastic claims reserving methods is performed.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 5 ; Year: 2017 ; Issue: 2 ; Pages: 1-44 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
state space models
KALMAN-filter
stochastic claims reserving
outstanding loss liabilities
ultimate loss
prediction uncertainty
chain ladder method

Ereignis
Geistige Schöpfung
(wer)
Chukhrova, Nataliya
Johannssen, Arne
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2017

DOI
doi:10.3390/risks5020030
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Chukhrova, Nataliya
  • Johannssen, Arne
  • MDPI

Entstanden

  • 2017

Ähnliche Objekte (12)