Protein‐Mediated ZnO Synthesis for Self‐Healing in Natural Rubber

Abstract: Natural rubber (NR) consists of mainly cis‐1,4‐polyisoprene with proteins as notable nonrubber components that significantly influence its properties. A relatively unexplored aspect is the role of these proteins in reducing and stabilizing metal ions to form metallic particles. Here, the NR/ZnO composite is successfully prepared by in situ generation of ZnO in the NR latex for the first time. With the aid of the proteins, the amount of ZnO is slightly higher than that formed in the saponified NR latex (SPNR), where some proteins are removed. Importantly, the noncovalent bonds between the proteins and/or amino acids with the ZnO formed in the NR latex can provide the self‐healing behavior of the NR/ZnO composite. However, heating at ≈40 °C is still necessary for reducing the healing time and increasing the self‐healing efficiency of the composite. Nevertheless, greater noncovalent bonds within NR/ZnO hinder rubber molecular chain interdiffusion and rearrangement essential for self‐healing behavior in uncross‐linked rubber, resulting in lower healing efficiency compared to SPNR/ZnO. This study underscores the significance of proteins and/or amino acids on NR's properties, despite their minor presence. Without sophisticated NR modification, this is a very simple and low‐cost technique to achieve the NR/ZnO composite with self‐healing behavior.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Protein‐Mediated ZnO Synthesis for Self‐Healing in Natural Rubber ; day:07 ; month:03 ; year:2024 ; extent:14
Macromolecular materials and engineering ; (07.03.2024) (gesamt 14)

Creator
Fueangphakdee, Piriyaphron
Nimpaiboon, Adun
Junkong, Preeyanuch

DOI
10.1002/mame.202300406
URN
urn:nbn:de:101:1-2024030813330566678774
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:43 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Fueangphakdee, Piriyaphron
  • Nimpaiboon, Adun
  • Junkong, Preeyanuch

Other Objects (12)