Arbeitspapier

U-MIDAS: MIDAS regressions with unrestricted lag polynomials

Mixed-data sampling (MIDAS) regressions allow to estimate dynamic equations that explain a low-frequency variable by high-frequency variables and their lags. When the difference in sampling frequencies between the regressand and the regressors is large, distributed lag functions are typically employed to model dynamics avoiding parameter proliferation. In macroeconomic applications, however, differences in sampling frequencies are often small. In such a case, it might not be necessary to employ distributed lag functions. In this paper, we discuss the pros and cons of unrestricted lag polynomials in MIDAS regressions. We derive unrestricted MIDAS regressions (U-MIDAS) from linear high-frequency models, discuss identification issues, and show that their parameters can be estimated by OLS. In Monte Carlo experiments, we compare U-MIDAS to MIDAS with functional distributed lags estimated by NLS. We show that U-MIDAS generally performs better than MIDAS when mixing quarterly and monthly data. On the other hand, with larger differences in sampling frequencies, distributed lag-functions outperform unrestricted polynomials. In an empirical application on out-of-sample nowcasting GDP in the US and the Euro area using monthly predictors, we find a good performance of U-MIDAS for a number of indicators, albeit the results depend on the evaluation sample. We suggest to consider U-MIDAS as a potential alternative to the existing MIDAS approach in particular for mixing monthly and quarterly variables. In practice, the choice between the two approaches should be made on a case-by-case basis, depending on their relative performance.

ISBN
978-3-86558-781-7
Sprache
Englisch

Erschienen in
Series: Discussion Paper Series 1 ; No. 2011,35

Klassifikation
Wirtschaft
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Forecasting Models; Simulation Methods
Thema
mixed data sampling
distributed lag polynomals
time aggregation
now-casting

Ereignis
Geistige Schöpfung
(wer)
Foroni, Claudia
Marcellino, Massimiliano
Schumacher, Christian
Ereignis
Veröffentlichung
(wer)
Deutsche Bundesbank
(wo)
Frankfurt a. M.
(wann)
2011

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Foroni, Claudia
  • Marcellino, Massimiliano
  • Schumacher, Christian
  • Deutsche Bundesbank

Entstanden

  • 2011

Ähnliche Objekte (12)