Artikel

Parameter identification of PEMFC based on Convolutional neural network optimized by balanced deer hunting optimization algorithm

This paper proposes a new optimal method for the parameter identification of a proton exchange membrane fuel cell (PEMFC) for increasing the model accuracy. In this research, a new improved version based on deer hunting optimization algorithm (DHOA) is applied to the Convolutional neural network for the PEMFC parameters identification purpose. Indeed, the method is implemented to develop the method performance for estimating the PEMFC model parameters. The method is then validated based on 4 operational conditions. Experimental results declared that utilizing the proposed method gives a prediction with higher accuracy for the parameters of the PEMFC model.

Language
Englisch

Bibliographic citation
Journal: Energy Reports ; ISSN: 2352-4847 ; Volume: 6 ; Year: 2020 ; Pages: 1572-1580 ; Amsterdam: Elsevier

Classification
Wirtschaft
Subject
Convolutional neural network
Deer hunting optimization algorithm
Parameter identification
Proton exchange membrane fuel cell

Event
Geistige Schöpfung
(who)
Yuan, Zhi
Wang, Weiqing
Wang, Haiyun
Ashourian, Mohsen
Event
Veröffentlichung
(who)
Elsevier
(where)
Amsterdam
(when)
2020

DOI
doi:10.1016/j.egyr.2020.06.011
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Yuan, Zhi
  • Wang, Weiqing
  • Wang, Haiyun
  • Ashourian, Mohsen
  • Elsevier

Time of origin

  • 2020

Other Objects (12)