Arbeitspapier

Evolutionary multi-objective optimisation for large-scale portfolio selection with both random and uncertain returns

With the advent of Big Data, managing large-scale portfolios of thousands of securities is one of the most challenging tasks in the asset management industry. This study uses an evolutionary multi objective technique to solve large-scale portfolio optimisation problems with both long-term listed and newly listed securities. The future returns of long-term listed securities are defined as random variables whose probability distributions are estimated based on sufficient historical data, while the returns of newly listed securities are defined as uncertain variables whose uncertainty distribution are estimated based on experts' knowledge. Our approach defines security returns as theoretically uncertain random variables and proposes a three-moment optimisation model with practical trading constraints. In this study, a framework for applying arbitrary multi-objective evolutionary algorithms to portfolio optimisation is established, and a novel evolutionary algorithm based on large-scale optimisation techniques is developed to solve the proposed model. The experimental results show that the proposed algorithm outperforms state-of-the-art evolutionary algorithms in large-scale portfolio optimisation.

Sprache
Englisch

Erschienen in
Series: QMS Working Paper ; No. 2023/02

Klassifikation
Wirtschaft
Thema
Evolutionary computations
Portfolio optimisation
Large-scale investment
Uncertain random variable
Multi-objective optimisation

Ereignis
Geistige Schöpfung
(wer)
Liu, Weilong
Zhang, Yong
Liu, Kailong
Quinn, Barry
Yang, Xingyu
Peng, Qiao
Ereignis
Veröffentlichung
(wer)
Queen's University Belfast, Queen's Management School
(wo)
Belfast
(wann)
2023

DOI
doi:10.2139/ssrn.4376779
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Liu, Weilong
  • Zhang, Yong
  • Liu, Kailong
  • Quinn, Barry
  • Yang, Xingyu
  • Peng, Qiao
  • Queen's University Belfast, Queen's Management School

Entstanden

  • 2023

Ähnliche Objekte (12)