Deep Anomaly Detection on Tennessee Eastman Process Data

Abstract: This paper provides the first comprehensive evaluation and analysis of modern (deep‐learning‐based) unsupervised anomaly detection methods for chemical process data. We focus on the Tennessee Eastman process dataset, a standard litmus test to benchmark anomaly detection methods for nearly three decades. Our extensive study will facilitate choosing appropriate anomaly detection methods in industrial applications. From the benchmark, we conclude that reconstruction‐based methods are the methods of choice, followed by generative and forecasting‐based methods.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Deep Anomaly Detection on Tennessee Eastman Process Data ; day:13 ; month:04 ; year:2023 ; extent:7
Chemie - Ingenieur - Technik ; (13.04.2023) (gesamt 7)

Creator
Hartung, Fabian
Franks, Billy Joe
Michels, Tobias
Wagner, Dennis
Liznerski, Philipp
Reithermann, Steffen
Fellenz, Sophie
Jirasek, Fabian
Rudolph, Maja
Neider, Daniel
Leitte, Heike
Song, Chen
Kloepper, Benjamin
Mandt, Stephan
Bortz, Michael
Burger, Jakob
Hasse, Hans
Kloft, Marius

DOI
10.1002/cite.202200238
URN
urn:nbn:de:101:1-2023041415010655621951
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:57 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Hartung, Fabian
  • Franks, Billy Joe
  • Michels, Tobias
  • Wagner, Dennis
  • Liznerski, Philipp
  • Reithermann, Steffen
  • Fellenz, Sophie
  • Jirasek, Fabian
  • Rudolph, Maja
  • Neider, Daniel
  • Leitte, Heike
  • Song, Chen
  • Kloepper, Benjamin
  • Mandt, Stephan
  • Bortz, Michael
  • Burger, Jakob
  • Hasse, Hans
  • Kloft, Marius

Other Objects (12)