Deep Anomaly Detection on Tennessee Eastman Process Data
Abstract: This paper provides the first comprehensive evaluation and analysis of modern (deep‐learning‐based) unsupervised anomaly detection methods for chemical process data. We focus on the Tennessee Eastman process dataset, a standard litmus test to benchmark anomaly detection methods for nearly three decades. Our extensive study will facilitate choosing appropriate anomaly detection methods in industrial applications. From the benchmark, we conclude that reconstruction‐based methods are the methods of choice, followed by generative and forecasting‐based methods.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Deep Anomaly Detection on Tennessee Eastman Process Data ; day:13 ; month:04 ; year:2023 ; extent:7
Chemie - Ingenieur - Technik ; (13.04.2023) (gesamt 7)
- Creator
-
Hartung, Fabian
Franks, Billy Joe
Michels, Tobias
Wagner, Dennis
Liznerski, Philipp
Reithermann, Steffen
Fellenz, Sophie
Jirasek, Fabian
Rudolph, Maja
Neider, Daniel
Leitte, Heike
Song, Chen
Kloepper, Benjamin
Mandt, Stephan
Bortz, Michael
Burger, Jakob
Hasse, Hans
Kloft, Marius
- DOI
-
10.1002/cite.202200238
- URN
-
urn:nbn:de:101:1-2023041415010655621951
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:57 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Hartung, Fabian
- Franks, Billy Joe
- Michels, Tobias
- Wagner, Dennis
- Liznerski, Philipp
- Reithermann, Steffen
- Fellenz, Sophie
- Jirasek, Fabian
- Rudolph, Maja
- Neider, Daniel
- Leitte, Heike
- Song, Chen
- Kloepper, Benjamin
- Mandt, Stephan
- Bortz, Michael
- Burger, Jakob
- Hasse, Hans
- Kloft, Marius