Measuring Spatially‐Resolved Potential Drops at Semiconductor Hetero‐Interfaces Using 4D‐STEM

Abstract: Characterizing long‐range electric fields and built‐in potentials in functional materials at nano to micrometer scales is of supreme importance for optimizing devices, e.g., the functionality of semiconductor hetero‐structures or battery materials is determined by the electric fields established at interfaces which can also vary spatially. In this study, momentum‐resolved four‐dimensional scanning transmission electron microscopy (4D‐STEM) is proposed for the quantification of these potentials and the optimization steps required to reach quantitative agreement with simulations for the GaAs/AlAs hetero‐junction model system are shown. Using STEM the differences in the mean inner potentials (∆MIP) of two materials forming an interface and resulting dynamic diffraction effects have to be considered. This study shows that the measurement quality is significantly improved by precession, energy filtering and a off‐zone‐axis alignment of the specimen. Complementary simulations yielding a ∆MIP of 1.3 V confirm that the potential drop due to charge transfer at the intrinsic interface is ≈0.1 V, in agreement with experimental and theoretical values found in literture. These results show the feasibility of accurately measuring built‐in potentials across hetero‐interfaces of real device structures and its promising application for more complex interfaces of other polycrystalline materials on the nanometer scale.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Measuring Spatially‐Resolved Potential Drops at Semiconductor Hetero‐Interfaces Using 4D‐STEM ; day:28 ; month:05 ; year:2023 ; extent:8
Small Methods ; (28.05.2023) (gesamt 8)

Creator
Chejarla, Varun Shankar
Ahmed, Shamail
Belz, Jürgen
Scheunert, Jonas
Beyer, Andreas
Volz, Kerstin

DOI
10.1002/smtd.202300453
URN
urn:nbn:de:101:1-2023053115312176993844
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:55 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Chejarla, Varun Shankar
  • Ahmed, Shamail
  • Belz, Jürgen
  • Scheunert, Jonas
  • Beyer, Andreas
  • Volz, Kerstin

Other Objects (12)