Artikel

The Welfare of Ramsey Optimal Policy Facing Auto-Regressive Shocks

With non-controllable auto-regressive shocks, the welfare of Ramsey optimal policy is the solution of a single Riccati equation of a linear quadratic regulator. The existing theory by Hansen and Sargent (2007) refers to an additional Sylvester equation but miss another equation for computing the block matrix weighting the square of non-controllable variables in the welfare function. There is no need to simulate impulse response functions over a long period, to compute period loss functions and to sum their discounted value over this long period, as currently done so far. Welfare is computed for the case of the new-Keynesian Phillips curve with an auto-regressive cost-push shock.

Sprache
Deutsch

Erschienen in
Journal: Economics Bulletin ; ISSN: 1545-2921 ; Volume: 40 ; Year: 2020 ; Issue: 2 ; Pages: 1797-1803 ; Champaign-Urbana: University of Illinois

Klassifikation
Wirtschaft
Optimization Techniques; Programming Models; Dynamic Analysis
Existence and Stability Conditions of Equilibrium
Stochastic and Dynamic Games; Evolutionary Games; Repeated Games
Money and Interest Rates: Forecasting and Simulation: Models and Applications
Monetary Policy
Policy Objectives; Policy Designs and Consistency; Policy Coordination
Comparative or Joint Analysis of Fiscal and Monetary Policy; Stabilization; Treasury Policy
Thema
Ramsey optimal policy
Welfare
Autoregressive shocks
new-Keynesian Phillips curve

Ereignis
Geistige Schöpfung
(wer)
Chatelain, Jean-Bernard
Ralf, Kirsten
Ereignis
Veröffentlichung
(wer)
University of Illinois
(wo)
Champaign-Urbana
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Chatelain, Jean-Bernard
  • Ralf, Kirsten
  • University of Illinois

Entstanden

  • 2020

Ähnliche Objekte (12)