Arbeitspapier

Forecasting using Bayesian and information theoretic model averaging: An application to UK inflation

In recent years there has been increasing interest in forecasting methods that utilise large datasets, driven partly by the recognition that policymaking institutions need to process large quantities of information. Factor analysis is one popular way of doing this. Forecast combination is another, and it is on this that we concentrate. Bayesian model averaging methods have been widely advocated in this area, but a neglected frequentist approach is to use information theoretic based weights. We consider the use of model averaging in forecasting UK inflation with a large dataset from this perspective. We find that an information theoretic model averaging scheme can be a powerful alternative both to the more widely used Bayesian model averaging scheme and to factor models

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 566

Klassifikation
Wirtschaft
Bayesian Analysis: General
Statistical Simulation Methods: General
Forecasting Models; Simulation Methods
Thema
Forecasting, Inflation, Bayesian model averaging, Akaike criteria, Forecast combining

Ereignis
Geistige Schöpfung
(wer)
Kapetanios, George
Labhard, Vincent
Price, Simon
Ereignis
Veröffentlichung
(wer)
Queen Mary University of London, Department of Economics
(wo)
London
(wann)
2006

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Kapetanios, George
  • Labhard, Vincent
  • Price, Simon
  • Queen Mary University of London, Department of Economics

Entstanden

  • 2006

Ähnliche Objekte (12)