Carrier–Carrier Repulsion Limits the Conductivity of N‐Doped Organic Semiconductors

Abstract: Molecular doping is a key strategy to enhance the electrical conductivity of organic semiconductors. Typically, the electrical conductivity shows a maximum value upon increased doping, after which the conductivity decreases. This decrease in conductivity is commonly attributed to unfavorable changes in the morphology. However, in recent simulation work, has shown, that the conductivity—at high doping—is instead limited by electron–electron repulsion rather than by morphology, at least for some material combinations. Based on the simulations, this limitation is expected to show up in the dependence of the Seebeck coefficient versus carrier density: the Seebeck coefficient will follow Heike's formula if carrier–carrier repulsion limits the conductivity. Here, the electrical conductivity and Seebeck coefficient are measured as a function of doping for a series of n‐type organic semiconductors. Additionally, the resulting carrier density is measured using metal‐insulator‐semiconductor diodes, which link dopant loading and the number of charge carriers. At high carrier densities, the Seebeck coefficient indeed follows Heike's formula, confirming that the conductivity is limited by carrier–carrier repulsion rather than by morphological effects. This study shows that current models of hopping transport in organic semiconductors may be incomplete. As a result, this study offers novel insights in the design of organic semiconductors.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Carrier–Carrier Repulsion Limits the Conductivity of N‐Doped Organic Semiconductors ; day:09 ; month:09 ; year:2024 ; extent:7
Advanced materials ; (09.09.2024) (gesamt 7)

Creator
Yang, Xuwen
Ye, Gang
Liu, Jian
Chiechi, Ryan C.
Koster, L. Jan Anton

DOI
10.1002/adma.202404397
URN
urn:nbn:de:101:1-2409091442253.040090950671
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:32 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Yang, Xuwen
  • Ye, Gang
  • Liu, Jian
  • Chiechi, Ryan C.
  • Koster, L. Jan Anton

Other Objects (12)