EmoSense: Revealing True Emotions Through Microgestures

Stress is a universally ubiquitous emotional state that takes place everywhere and microgestures (MGs) have been verified to indicate more accurate hidden emotions. However, only limited studies attempted to explore how MGs could reflect stress levels. Herein, EmoSense, an emerging technology for wearable systems containing a three‐layer stress detection mechanism, is proposed: 1) converting the MGs into digital signals; 2) training a machine learning‐based MG detection model; and 3) configuring the stress level based on the MG frequency. To detect the MGs, the swept frequency capacitive sensing technology to is adopted capture the MG signals and the random forest model to detect the MGs effectively is applied. 16 participants are recruited in the pilot study to verify the correlation between stress level and MG frequency. The experimental results further verify that stress level is highly related to other negative emotions that should be studied while handling high stress levels.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
EmoSense: Revealing True Emotions Through Microgestures ; day:29 ; month:06 ; year:2023 ; extent:16
Advanced intelligent systems ; (29.06.2023) (gesamt 16)

Urheber
Fang, Le
Xing, Sark Pangrui
Long, Yonghao
Lee, Kun-Pyo
Wang, Stephen Jia

DOI
10.1002/aisy.202300050
URN
urn:nbn:de:101:1-2023063015074902547557
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
2025-08-14T10:49:02+0200

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)