Arbeitspapier

Trending Mixture Copula Models with Copula Selection

Modeling the joint tails of multiple nancial time series has important implications for risk management. Classical models for dependence often encounter a lack of t in the joint tails, calling for additional exibility. In this paper we introduce a new nonparametric time-varying mixture copula model, in which both weights and dependence parameters are deterministic functions of time. We propose penalized trending mixture copula models with group smoothly clipped absolute deviation (SCAD) penalty functions to do the estimation and copula selection simultaneously. Monte Carlo simulation results suggest that the shrinkage estimation procedure performs well in selecting and estimating both constant and trending mixture copula models. Using the proposed model and method, we analyze the evolution of the dependence among four international stock markets, and nd substantial changes in the levels and patterns of the dependence, in particular around crisis periods.

Sprache
Englisch

Erschienen in
Series: IRTG 1792 Discussion Paper ; No. 2018-057

Klassifikation
Wirtschaft
Mathematical and Quantitative Methods: General
Thema
Copula
Time-Varying Copula
Mixture Copula
Copula Selection

Ereignis
Geistige Schöpfung
(wer)
Yang, Bingduo
Cai, Zongwu
Hafner, Christian M.
Liu, Guannan
Ereignis
Veröffentlichung
(wer)
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
(wo)
Berlin
(wann)
2018

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Yang, Bingduo
  • Cai, Zongwu
  • Hafner, Christian M.
  • Liu, Guannan
  • Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"

Entstanden

  • 2018

Ähnliche Objekte (12)