Distributivity and minimality in perfect tree forcings for singular cardinals

Abstract: Dobrinen, Hathaway and Prikry studied a forcing ℙκ consisting of perfect trees of height λ and width κ where κ is a singular λ-strong limit of cofinality λ. They showed that if κ is singular of countable cofinality, then ℙκ is minimal for ω-sequences assuming that κ is a supremum of a sequence of measurable cardinals. We obtain this result without the measurability assumption.

Prikry proved that ℙκ is (ω, ν)-distributive for all ν < κ given a singular ω-strong limit cardinal κ of countable cofinality, and Dobrinen et al. asked whether this result generalizes if κ has uncountable cofinality. We answer their question in the negative by showing that ℙκ is not (λ, 2)-distributive if κ is a λ-strong limit of uncountable cofinality λ and we obtain the same result for a range of similar forcings, including one that Dobrinen et al. consider that consists of pre-perfect trees. We also show that ℙκ in particular is not (ω, ·, λ+)-distributive under these assumptions.

While developing these ideas, we address natural questions regarding minimality and collapses of cardinals

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Israel journal of mathematics. - 261, 2 (2024) , 549-588, ISSN: 1565-8511

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2024
Urheber
Levine, Maxwell
Mildenberger, Heike

DOI
10.1007/s11856-024-2607-z
URN
urn:nbn:de:bsz:25-freidok-2473189
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 11:00 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2024

Ähnliche Objekte (12)