Distributivity and minimality in perfect tree forcings for singular cardinals
Abstract: Dobrinen, Hathaway and Prikry studied a forcing ℙκ consisting of perfect trees of height λ and width κ where κ is a singular λ-strong limit of cofinality λ. They showed that if κ is singular of countable cofinality, then ℙκ is minimal for ω-sequences assuming that κ is a supremum of a sequence of measurable cardinals. We obtain this result without the measurability assumption.
Prikry proved that ℙκ is (ω, ν)-distributive for all ν < κ given a singular ω-strong limit cardinal κ of countable cofinality, and Dobrinen et al. asked whether this result generalizes if κ has uncountable cofinality. We answer their question in the negative by showing that ℙκ is not (λ, 2)-distributive if κ is a λ-strong limit of uncountable cofinality λ and we obtain the same result for a range of similar forcings, including one that Dobrinen et al. consider that consists of pre-perfect trees. We also show that ℙκ in particular is not (ω, ·, λ+)-distributive under these assumptions.
While developing these ideas, we address natural questions regarding minimality and collapses of cardinals
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Israel journal of mathematics. - 261, 2 (2024) , 549-588, ISSN: 1565-8511
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2024
- Urheber
- DOI
-
10.1007/s11856-024-2607-z
- URN
-
urn:nbn:de:bsz:25-freidok-2473189
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 11:00 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Levine, Maxwell
- Mildenberger, Heike
- Universität
Entstanden
- 2024