Arbeitspapier

A blocking and regularization approach to high dimensional realized covariance estimation

We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven grouping of assets of similar trading frequency ensures the reduction of data loss due to refresh time sampling. In an extensive simulation study mimicking the empirical features of the S&P 1500 universe we show that the 'RnB' estimator yields efficiency gains and outperforms competing kernel estimators for varying liquidity settings, noise-to-signal ratios, and dimensions. An empirical application of forecasting daily covariances of the S&P 500 index confirms the simulation results.

Sprache
Englisch

Erschienen in
Series: CFS Working Paper ; No. 2009/20

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Thema
Covariance Estimation
Blocking
Realized Kernel
Regularization
Microstructure
Asynchronous Trading
Varianzanalyse
Schätztheorie
Core
Multivariate Analyse
Theorie
Schätzung
Börsenkurs
Wertpapierhandel
Aktienmarkt
Mikrostrukturanalyse
USA

Ereignis
Geistige Schöpfung
(wer)
Hautsch, Nikolaus
Kyj, Lada M.
Hautsch, Nikolaus
Ereignis
Veröffentlichung
(wer)
Goethe University Frankfurt, Center for Financial Studies (CFS)
(wo)
Frankfurt a. M.
(wann)
2009

Handle
URN
urn:nbn:de:hebis:30-72694
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hautsch, Nikolaus
  • Kyj, Lada M.
  • Goethe University Frankfurt, Center for Financial Studies (CFS)

Entstanden

  • 2009

Ähnliche Objekte (12)