Cell dynamics in WOX5-overexpressing root tips: the impact of local auxin biosynthesis

Abstract: Root stem cell niche functioning requires the formation and maintenance of the specific “auxin-rich domain” governed by directional auxin transport and local auxin production. Auxin maximum co-localizes with the WOX5 expression domain in the quiescent center that separates mitotically active proximal and distal root meristems. Here we unravel the interconnected processes happening under WOX5 overexpression by combining in vivo experiments and mathematical modeling. We showed that WOX5-induced TAA1-mediated auxin biosynthesis is the cause, whereas auxin accumulation, PIN transporters relocation, and auxin redistribution between proximal and distal root meristems are its subsequent effects that influence the formation of the well-described phenotype with an enlarged root cap. These findings helped us to clarify the role of WOX5, which serves as a local QC-specific regulator that activates biosynthesis of non-cell-autonomous signal auxin to regulate the distal meristem functioning. The mathematical model with WOX5-mediated auxin biosynthesis and auxin-regulated cell growth, division, and detachment reproduces the columella cells dynamics in both wild type and under WOX5 dysregulation

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Frontiers in plant science. - 11 (2020) , 560169, ISSN: 1664-462X

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2021
Creator
Savina, Maria S.
Pasternak, Taras
Omelyanchuk, Nadya A.
Novikova, Daria D.
Palme, Klaus
Mironova, Victoria
Lavrekha, Viktoriya V.

DOI
10.3389/fpls.2020.560169
URN
urn:nbn:de:bsz:25-freidok-2205314
Rights
Kein Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:54 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Savina, Maria S.
  • Pasternak, Taras
  • Omelyanchuk, Nadya A.
  • Novikova, Daria D.
  • Palme, Klaus
  • Mironova, Victoria
  • Lavrekha, Viktoriya V.
  • Universität

Time of origin

  • 2021

Other Objects (12)