Arbeitspapier

Efficient iterative maximum likelihood estimation of high-parameterized time series models

We propose an iterative procedure to efficiently estimate models with complex log-likelihood functions and the number of parameters relative to the observations being potentially high. Given consistent but inefficient estimates of sub-vectors of the parameter vector, the procedure yields computationally tractable, consistent and asymptotic efficient estimates of all parameters. We show the asymptotic normality and derive the estimator's asymptotic covariance in dependence of the number of iteration steps. To mitigate the curse of dimensionality in high-parameterized models, we combine the procedure with a penalization approach yielding sparsity and reducing model complexity. Small sample properties of the estimator are illustrated for two time series models in a simulation study. In an empirical application, we use the proposed method to estimate the connectedness between companies by extending the approach by Diebold and Yilmaz (2014) to a high-dimensional non-Gaussian setting.

Sprache
Englisch

Erschienen in
Series: CFS Working Paper ; No. 450

Klassifikation
Wirtschaft
Estimation: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Econometric Modeling: General
Thema
Multi-Step estimation
Sparse estimation
Multivariate time series
Maximum likelihood estimation
Copula

Ereignis
Geistige Schöpfung
(wer)
Hautsch, Nikolaus
Okhrin, Ostap
Ristig, Alexander
Ereignis
Veröffentlichung
(wer)
Goethe University Frankfurt, Center for Financial Studies (CFS)
(wo)
Frankfurt a. M.
(wann)
2014

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hautsch, Nikolaus
  • Okhrin, Ostap
  • Ristig, Alexander
  • Goethe University Frankfurt, Center for Financial Studies (CFS)

Entstanden

  • 2014

Ähnliche Objekte (12)