Predicting the gas resource potential in reservoir C-sand interval of Lower Goru Formation, Middle Indus Basin, Pakistan

Abstract: The integrated study of seismic attributes and inversion analysis can provide a better understanding for predicting the hydrocarbon-bearing zones even in extreme heterogeneous reservoirs. This study aims to delineate and characterize the gas saturated zone within the reservoir (Cretaceous C-sand) interval of Sawan gas field, Middle Indus Basin, Pakistan. The hydrocarbon bearing zone is well identified through the seismic attribute analysis along a sand channel. The sparse-spike inversion analysis has efficiently captured the variations in reservoir parameter (P-impedance) for gas prospect. Inversion results indicated that the relatively lower P-impedance values are encountered along the predicted sand channel. To further characterize the reservoir, geostatistical techniques comprising multiattribute regression and probabilistic neural network (PNN) analysis are applied to predict the effective porosity of reservoir. Comparatively, the PNN analysis predicted the targeted property more efficiently and applied its estimations on entire seismic volume. Furthermore, the geostatistical estimations of PNN analysis significantly predicted the gas-bearing zones and confirmed the sand channel as a major contributor of gas accumulation in the area. These estimates are in appropriate agreement with each other, and the workflow adopted here can be applied to various South Asian regions and in other parts of the world for improved characterization of gas reservoirs.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Predicting the gas resource potential in reservoir C-sand interval of Lower Goru Formation, Middle Indus Basin, Pakistan ; volume:13 ; number:1 ; year:2021 ; pages:49-71 ; extent:23
Open Geosciences ; 13, Heft 1 (2021), 49-71 (gesamt 23)

Urheber
Mughal, Muhammad Rizwan
Akhter, Gulraiz

DOI
10.1515/geo-2020-0170
URN
urn:nbn:de:101:1-2501051550172.051588120492
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:34 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Mughal, Muhammad Rizwan
  • Akhter, Gulraiz

Ähnliche Objekte (12)