New inertial forward–backward algorithm for convex minimization with applications

Abstract: In this work, we present a new proximal gradient algorithm based on Tseng’s extragradient method and an inertial technique to solve the convex minimization problem in real Hilbert spaces. Using the stepsize rules, the selection of the Lipschitz constant of the gradient of functions is avoided. We then prove the weak convergence theorem and present the numerical experiments for image recovery. The comparative results show that the proposed algorithm has better efficiency than other methods.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
New inertial forward–backward algorithm for convex minimization with applications ; volume:56 ; number:1 ; year:2023 ; extent:13
Demonstratio mathematica ; 56, Heft 1 (2023) (gesamt 13)

Creator
Kankam, Kunrada
Cholamjiak, Watcharaporn
Cholamjiak, Prasit

DOI
10.1515/dema-2022-0188
URN
urn:nbn:de:101:1-2023021613042549225395
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:47 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Kankam, Kunrada
  • Cholamjiak, Watcharaporn
  • Cholamjiak, Prasit

Other Objects (12)