Artikel

Maximum efficiency of wind energy using novel Dynamic Voltage Restorer for DFIG based Wind Turbine

Fault-tolerable capability of Doubly Fed Induction Generator (DFIG) against disturbance occurrence is recognized as Fault Ride-Through (FRT). With quick and accurate compensation potentiality of Dynamic Voltage Restorer (DVR) to retrieve the nominal PCC voltage, DFIG can safely follow its normal operation in the power system. Multi-Level Inverter (MLI) as the main part of DVR with unique responsibility of synthesizing the staircase sinusoidal voltage ascertains the performance and flexibility of DVR. In this paper a novel asymmetrical MLI structure based on Level Creator and H-bridge inverter is indwelt in DVR in order to providing the high quality voltage. To more augment the efficiency of DVR in dealing with FRT issue, it has been equipped with Brain Emotional Learning Based Intelligent Controller (BELBIC) based on Multi Objective Bees Algorithm (MOBA). So-called AMLI-BELBIC based DVR has been thoroughly appraised under different balanced and unbalanced voltage sags and swells so that FRT capability of DFIG to be appeared. To sum up, the relevant analytical expression along with the simulation results has transparently corroborated the performance of AMLI-BELBIC based DVR aimed to augment the FRT capability of DFIG.

Sprache
Englisch

Erschienen in
Journal: Energy Reports ; ISSN: 2352-4847 ; Volume: 4 ; Year: 2018 ; Pages: 308-322 ; Amsterdam: Elsevier

Klassifikation
Wirtschaft
Thema
Doubly Fed Induction Generator
Dynamic Voltage Restorer
Optimal control
Wind energy
Wind Turbine

Ereignis
Geistige Schöpfung
(wer)
Falehi, Ali Darvish
Rafiee, Mansour
Ereignis
Veröffentlichung
(wer)
Elsevier
(wo)
Amsterdam
(wann)
2018

DOI
doi:10.1016/j.egyr.2018.01.006
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Falehi, Ali Darvish
  • Rafiee, Mansour
  • Elsevier

Entstanden

  • 2018

Ähnliche Objekte (12)