Advancing Neural Networks: Innovations and Impacts on Energy Consumption

Abstract: The energy efficiency of Artificial Intelligence (AI) systems is a crucial and actual issue that may have an important impact on an ecological, economic and technological level. Spiking Neural Networks (SNNs) are strongly suggested as valid candidates able to overcome Artificial Neural Networks (ANNs) in this specific contest. In this study, the proposal involves the review and comparison of energy consumption of the popular Artificial Neural Network architectures implemented on the CPU and GPU hardware compared with Spiking Neural Networks implemented in specialized memristive hardware and biological neural network human brain. As a result, the energy efficiency of Spiking Neural Networks can be indicated from 5 to 8 orders of magnitude. Some Spiking Neural Networks solutions are proposed including continuous feedback‐driven self‐learning approaches inspired by biological Spiking Neural Networks as well as pure memristive solutions for Spiking Neural Networks.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Advancing Neural Networks: Innovations and Impacts on Energy Consumption ; day:27 ; month:11 ; year:2024 ; extent:18
Advanced electronic materials ; (27.11.2024) (gesamt 18)

Urheber
Fedorova, Alina
Jovišić, Nikola
Vallverdú, Jordi
Battistoni, Silvia
Jovičić, Miloš
Medojević, Milovan
Toschev, Alexander
Alshanskaia, Evgeniia
Talanov, Max
Erokhin, Victor

DOI
10.1002/aelm.202400258
URN
urn:nbn:de:101:1-2411281310233.638747540512
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:20 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Fedorova, Alina
  • Jovišić, Nikola
  • Vallverdú, Jordi
  • Battistoni, Silvia
  • Jovičić, Miloš
  • Medojević, Milovan
  • Toschev, Alexander
  • Alshanskaia, Evgeniia
  • Talanov, Max
  • Erokhin, Victor

Ähnliche Objekte (12)