A Knowledge Transfer Method for Unsupervised Pose Keypoint Detection Based on Domain Adaptation and CAD Models

Vision‐based pose estimation is a basic task in many industrial fields such as bin‐picking, autonomous assembly, and augmented reality. One of the most commonly used pose estimation methods first detects the 2D pose keypoints in the input image and then calculates the 6D pose using a pose solver. Recently, deep learning is widely used in pose keypoint detection and performs excellent accuracy and adaptability. However, its over‐reliance on sufficient and high‐quality samples and supervision is prominent, particularly in the industrial field, leading to high data cost. Based on domain adaptation and computer‐aided‐design (CAD) models, herein, a virtual‐to‐real knowledge transfer method for pose keypoint detection to reduce the data cost of deep learning is proposed. To address the disorder of knowledge flow, a viewpoint‐driven feature alignment strategy is proposed to simultaneously eliminate interdomain differences and preserve intradomain differences. The shape invariance of rigid objects is then introduced as constraints to address the large assumption space problem in the regressive domain adaptation. The multidimensional experimental results demonstrate the superiority of the method. Without real annotations, the normalized pixel error of keypoint detection is reported as 0.033, and the proportion of pixel errors lower than 0.05 is up to 92.77%.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
A Knowledge Transfer Method for Unsupervised Pose Keypoint Detection Based on Domain Adaptation and CAD Models ; day:19 ; month:01 ; year:2023 ; extent:12
Advanced intelligent systems ; (19.01.2023) (gesamt 12)

Urheber
Du, Fuzhou
Kong, Feifei
Zhao, Delong

DOI
10.1002/aisy.202200214
URN
urn:nbn:de:101:1-2023012014103261274539
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:36 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Du, Fuzhou
  • Kong, Feifei
  • Zhao, Delong

Ähnliche Objekte (12)