Arbeitspapier

Finite sample performance of sequential designs for model identification

Classical regression analysis is usually performed in two steps. In a first step an appropriate model is identified to describe the data generating process and in a second step statistical inference is performed in the identified model. An intuitively appealing approach to the design of experiment for these different purposes are sequential strategies, which use parts of the sample for model identification and adapt the design according to the outcome of the identification steps. In this paper we investigate the finite sample properties of two sequential design strategies, which were recently proposed in the literature. A detailed comparison of sequential designs for model discrimination in several regression models is given by means of a simulation study. Some non-sequential designs are also included in the study.

Language
Englisch

Bibliographic citation
Series: Technical Report ; No. 2003,32

Subject
optimal design
robust design
discrimination design
sequential design
F-test
Regression
Modell-Spezifikation
Stichprobenverfahren
Theorie

Event
Geistige Schöpfung
(who)
Dette, Holger
Kwiecien, Robert
Event
Veröffentlichung
(who)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(where)
Dortmund
(when)
2003

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Dette, Holger
  • Kwiecien, Robert
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Time of origin

  • 2003

Other Objects (12)