Arbeitspapier

Time Series of Count Data: Modelling and Estimation

This paper compares various models for time series of counts which can account for discreetness, overdispersion and serial correlation. Besides observation- and parameter-driven models based upon corresponding conditional Poisson distributions, we also consider a dynamic ordered probit model as a flexible specification to capture the salient features of time series of counts. For all models, we present appropriate efficient estimation procedures. For parameter-driven specifications this requires Monte Carlo procedures like simulated Maximum likelihood or Markov Chain Monte-Carlo. The methods including corresponding diagnostic tests are illustrated with data on daily admissions for asthma to a single hospital.

Sprache
Englisch

Erschienen in
Series: Economics Working Paper ; No. 2005-08

Klassifikation
Wirtschaft
Thema
Efficient Importance Sampling
GLARMA
Markov Chain Monte-Carlo
Observation-driven model
Parameter-driven model
Ordered Probit
Zeitreihenanalyse
Zähldatenmodell
Theorie

Ereignis
Geistige Schöpfung
(wer)
Jung, Robert
Kukuk, Martin
Liesenfeld, Roman
Ereignis
Veröffentlichung
(wer)
Kiel University, Department of Economics
(wo)
Kiel
(wann)
2005

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Jung, Robert
  • Kukuk, Martin
  • Liesenfeld, Roman
  • Kiel University, Department of Economics

Entstanden

  • 2005

Ähnliche Objekte (12)