Application of big data technology in electromechanical operation and maintenance intelligent platform

Abstract: Aiming at the data preprocessing requirements and label data cost issues arising from the intelligent operation and maintenance of electromechanical equipment, this article mainly studies structured data cleaning methods and fault prediction algorithms for a small number of label samples. First, this article introduces the overall architecture of the intelligent operation and maintenance system for electromechanical equipment. Second, based on the electromechanical equipment operation and maintenance data access service, data cleaning, and fault prediction, this article constructs an electromechanical equipment intelligent operation and maintenance platform based on Kafka message queue, Spark cluster, and other components, and introduces the functional composition of the system in detail. Finally, the article describes the functions of each component of data access service, data cleaning, and fault prediction in detail. To address the cost issue associated with sufficient labeled sample data for data analysis, we propose a semi-supervised learning algorithm, IF-GBDT, based on improved independent forests and Gradient Boosting Decision Tree. The independent forest algorithm supplements labels for unlabeled data based on the learning results of a small number of labeled samples. We also use the gradient lifting tree algorithm to train the model based on the new tag data set for fault prediction, thereby reducing the impact of lack of tags on the accuracy of the prediction model. Experiments show that this method improves classification accuracy and has good adaptability and concurrency performance for a small number of tags.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Application of big data technology in electromechanical operation and maintenance intelligent platform ; volume:14 ; number:1 ; year:2023 ; extent:9
Paladyn ; 14, Heft 1 (2023) (gesamt 9)

Urheber
Yang, Wenjuan
Chan, Zhongbin
Wang, Yi
Qi, Fuli

DOI
10.1515/pjbr-2022-0121
URN
urn:nbn:de:101:1-2023080114095427331357
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:53 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Yang, Wenjuan
  • Chan, Zhongbin
  • Wang, Yi
  • Qi, Fuli

Ähnliche Objekte (12)