Adapter-mediated transduction with lentiviral vectors: A novel tool for cell-type-specific gene transfer

Abstract: Selective gene delivery to a cell type of interest utilizing targeted lentiviral vectors (LVs) is an efficient and safe strategy for cell and gene therapy applications, including chimeric antigen receptor (CAR)-T cell therapy. LVs pseudotyped with measles virus envelope proteins (MV-LVs) have been retargeted by ablating binding to natural receptors while fusing to a single-chain antibody specific for the antigen of choice. However, the broad application of MV-LVs is hampered by the laborious LV engineering required for every new target. Here, we report the first versatile targeting system for MV-LVs that solely requires mixing with biotinylated adapter molecules to enable selective gene transfer. The analysis of the selectivity in mixed cell populations revealed transduction efficiencies below the detection limit in the absence of an adapter and up to 5000-fold on-to-off-target ratios. Flexibility was confirmed by transducing cell lines and primary cells applying seven different adapter specificities in total. Furthermore, adapter mixtures were applied to generate CAR-T cells with varying CD4/CD8-ratios in a single transduction step. In summary, a selective and flexible targeting system was established that may serve to improve the safety and efficacy of cellular therapies. Compatibility with a wide range of readily available biotinylated molecules provides an ideal technology for a variety of applications

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Viruses. - 14, 10 (2022) , 2157, ISSN: 1999-4915

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2022
Creator
Cordes, Nicole
Winter, Nora
Kolbe, Carolin
Kotter, Bettina
Mittelstaet, Joerg
Assenmacher, Mario
Cathomen, Anton
Kaiser, Andrew
Schaser, Thomas

DOI
10.3390/v14102157
URN
urn:nbn:de:bsz:25-freidok-2304491
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:43 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2022

Other Objects (12)