Arbeitspapier
Monte Carlo simulations of DEA efficiency measures and hypothesis tests
The statistical properties of the efficiency estimators based on Data Envelopment Analysis (DEA) are largely unknown. Recent work by Simar et al. and Banker has shown the consistency of the DEA estimators under specific assumptions, and Banker proposes asymptotic tests of whether two subsamples have the same efficiency distribution. There are difficulties arising from bias in small samples and lack of independence in nested models. This paper suggest no new tests, but presents results on bias in simulations of nested small sample DEA models, and examines the approximating powers of suggested tests under various specifications of scale and omitted variables.
- Sprache
-
Englisch
- Erschienen in
-
Series: Memorandum ; No. 1999,09
- Klassifikation
-
Wirtschaft
Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
Operations Research; Statistical Decision Theory
Statistical Simulation Methods: General
- Thema
-
Data Envelopment Analysis
Monte Carlo simulations
Hypothesis tests
Non-parametric efficiency estimation
Monte-Carlo-Methode
Mathematische Optimierung
Wirtschaftliche Effizienz
Technische Effizienz
Data-Envelopment-Analyse
Theorie
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Kittelsen, Sverre A. C.
- Ereignis
-
Veröffentlichung
- (wer)
-
University of Oslo, Department of Economics
- (wo)
-
Oslo
- (wann)
-
1999
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Kittelsen, Sverre A. C.
- University of Oslo, Department of Economics
Entstanden
- 1999