Arbeitspapier

Monte Carlo simulations of DEA efficiency measures and hypothesis tests

The statistical properties of the efficiency estimators based on Data Envelopment Analysis (DEA) are largely unknown. Recent work by Simar et al. and Banker has shown the consistency of the DEA estimators under specific assumptions, and Banker proposes asymptotic tests of whether two subsamples have the same efficiency distribution. There are difficulties arising from bias in small samples and lack of independence in nested models. This paper suggest no new tests, but presents results on bias in simulations of nested small sample DEA models, and examines the approximating powers of suggested tests under various specifications of scale and omitted variables.

Sprache
Englisch

Erschienen in
Series: Memorandum ; No. 1999,09

Klassifikation
Wirtschaft
Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
Operations Research; Statistical Decision Theory
Statistical Simulation Methods: General
Thema
Data Envelopment Analysis
Monte Carlo simulations
Hypothesis tests
Non-parametric efficiency estimation
Monte-Carlo-Methode
Mathematische Optimierung
Wirtschaftliche Effizienz
Technische Effizienz
Data-Envelopment-Analyse
Theorie

Ereignis
Geistige Schöpfung
(wer)
Kittelsen, Sverre A. C.
Ereignis
Veröffentlichung
(wer)
University of Oslo, Department of Economics
(wo)
Oslo
(wann)
1999

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Kittelsen, Sverre A. C.
  • University of Oslo, Department of Economics

Entstanden

  • 1999

Ähnliche Objekte (12)