Arbeitspapier
Maximally selected chi-square statistics and umbrella orderings
Binary outcomes that depend on an ordinal predictor in a nonmonotonic way are common in medical data analysis. Such patterns can be addressed in terms of cutpoints: for example, one looks for two cutpoints that define an interval in the range of the ordinal predictor for which the probability of a positive outcome is particularly high (or low). A chi-square test may then be performed to compare the proportions of positive outcomes in and outside this interval. However, if the two cutpoints are chosen to maximize the chi-square statistic, referring the obtained chi-square statistic to the standard chi-square distribution is an inappropriate approach. It is then necessary to correct the p-value for multiple comparisons by considering the distribution of the maximally selected chi-square statistic instead of the nominal chi-square distribution. Here, we derive the exact distribution of the chi-square statistic obtained by the optimal two cutpoints. We suggest a combinatorial computation method and illustrate our approach by a simulation study and an application to varicella data.
- Sprache
-
Englisch
- Erschienen in
-
Series: Discussion Paper ; No. 476
- Thema
-
Chi-square test
classification
cutpoint
non-monotonic
changepoint
threshold
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Boulesteix, Anne-Laure
Strobl, Carolin
- Ereignis
-
Veröffentlichung
- (wer)
-
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
- (wo)
-
München
- (wann)
-
2006
- DOI
-
doi:10.5282/ubm/epub.1844
- Handle
- URN
-
urn:nbn:de:bvb:19-epub-1844-2
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Boulesteix, Anne-Laure
- Strobl, Carolin
- Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
Entstanden
- 2006