Arbeitspapier

Goodness-of-fit test for specification of semiparametric copula dependence models

This paper concerns goodness-of-fit test for semiparametric copula models. Our contribution is two-fold: we first propose a new test constructed via the comparison between in-sample and out-of-sample pseudolikelihoods, which avoids the use of any probability integral transformations. Under the null hypothesis that the copula model is correctly specified, we show that the proposed test statistic converges in probability to a constant equal to the dimension of the parameter space and establish the asymptotic normality for the test. Second, we introduce a hybrid mechanism to combine several test statistics, so that the resulting test will make a desirable test power among the involved tests. This hybrid method is particularly appealing when there exists no single dominant optimal test. We conduct comprehensive simulation experiments to compare the proposed new test and hybrid approach with the best blank test shown in Genest et al. (2009). For illustration, we apply the proposed tests to analyze three real datasets.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2013-041

Klassifikation
Wirtschaft
Hypothesis Testing: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Evaluation, Validation, and Selection
International Financial Markets
Thema
hybrid test
in-and-out-of sample likelihood
power
tail dependence

Ereignis
Geistige Schöpfung
(wer)
Zhang, Shulin
Okhrin, Ostap
Zhou, Qian M.
Song, Peter X.-K.
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2013

Handle
Letzte Aktualisierung
20.09.2024, 08:25 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Zhang, Shulin
  • Okhrin, Ostap
  • Zhou, Qian M.
  • Song, Peter X.-K.
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2013

Ähnliche Objekte (12)