Arbeitspapier

Learning to Average Predictively over Good and Bad: Comment on: Using Stacking to Average Bayesian Predictive Distributions

We suggest to extend the stacking procedure for a combination of predictive densities, proposed by Yao et al in the journal Bayesian Analysis to a setting where dynamic learning occurs about features of predictive densities of possibly misspecified models. This improves the averaging process of good and bad model forecasts. We summarise how this learning is done in economics and finance using mixtures. We also show that our proposal can be extended to combining forecasts and policies. The technical tools necessary for the implementation refer to filtering methods from nonlinear time series and we show their connection with machine learning. We illustrate our suggestion using results from Basturk et al based on financial data about US portfolios from 1928 until 2015.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. TI 2018-063/III

Klassifikation
Wirtschaft
Bayesian Analysis: General
Statistical Simulation Methods: General
Thema
Bayesian learning
predictive density combinations

Ereignis
Geistige Schöpfung
(wer)
Hoogerheide, Lennart
van Dijk, Herman
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2018

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hoogerheide, Lennart
  • van Dijk, Herman
  • Tinbergen Institute

Entstanden

  • 2018

Ähnliche Objekte (12)