Arbeitspapier
Posterior average effects
Economists are often interested in estimating averages with respect to distributions of unobservables, such as moments of individual fixed-effects, or average partial effects in discrete choice models. For such quantities, we propose and study posterior average effects (PAE), where the average is computed conditional on the sample, in the spirit of empirical Bayes and shrinkage methods. While the usefulness of shrinkage for prediction is well-understood, a justification of posterior conditioning to estimate population averages is currently lacking. We show that PAE have minimum worst-case specification error under various forms of misspecification of the parametric distribution of unobservables. In addition, we introduce a measure of informativeness of the posterior conditioning, which quantifies the worst-case specification error of PAE relative to parametric model-based estimators. As illustrations, we report PAE estimates of distributions of neighborhood effects in the US, and of permanent and transitory components in a model of income dynamics.
- Sprache
-
Englisch
- Erschienen in
-
Series: cemmap working paper ; No. CWP36/21
- Klassifikation
-
Wirtschaft
Estimation: General
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
- Thema
-
model misspecification
robustness
sensitivity analysis
empirical Bayes
posterior conditioning
latent variables
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Bonhomme, Stéphane
Weidner, Martin
- Ereignis
-
Veröffentlichung
- (wer)
-
Centre for Microdata Methods and Practice (cemmap)
- (wo)
-
London
- (wann)
-
2021
- DOI
-
doi:10.47004/wp.cem.2021.3621
- Handle
- Letzte Aktualisierung
-
20.09.2024, 08:22 MESZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Bonhomme, Stéphane
- Weidner, Martin
- Centre for Microdata Methods and Practice (cemmap)
Entstanden
- 2021