Arbeitspapier
Posterior average effects
Economists are often interested in estimating averages with respect to distributions of unobservables. Examples are moments of individual fixed-effects, average effects in discrete choice models, or counterfactual simulations in structural models. For such quantities, we propose and study "posterior average effects", where the average is computed conditional on the sample, in the spirit of empirical Bayes and shrinkage methods. While the usefulness of shrinkage for prediction is well-understood, a justification of posterior conditioning to estimate population averages is currently lacking. We establish two robustness properties of posterior average effects under misspecification of the assumed distribution of unobservables: they are optimal in terms of local worst-case bias, and their global bias is at most twice the minimum worst-case bias within a large class of estimators. We establish related robustness results for posterior predictors. In addition, we suggest a simple measure of the information contained in the posterior conditioning. Lastly, we present two empirical illustrations, to estimate the distributions of neighborhood effects in the US, and of permanent and transitory components in a model of income dynamics.
- Sprache
-
Englisch
- Erschienen in
-
Series: cemmap working paper ; No. CWP43/19
- Klassifikation
-
Wirtschaft
Estimation: General
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
- Thema
-
model misspeci cation
robustness
sensitivity analysis
empirical Bayes
posterior conditioning
latent variables
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Bonhomme, Stéphane
Weidner, Martin
- Ereignis
-
Veröffentlichung
- (wer)
-
Centre for Microdata Methods and Practice (cemmap)
- (wo)
-
London
- (wann)
-
2019
- DOI
-
doi:10.1920/wp.cem.2019.4319
- Handle
- Letzte Aktualisierung
-
20.09.2024, 08:21 MESZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Bonhomme, Stéphane
- Weidner, Martin
- Centre for Microdata Methods and Practice (cemmap)
Entstanden
- 2019