Two-step electrochemical Au nanoparticle formation in polyaniline

Abstract: In this work, we use a two-step cyclic electrochemical process to insert Au into polyaniline (PANI). It was suggested previously that this method would lead to the formation of atomic Au clusters with controlleds number of Au atoms without providing morphological proof. In each cycle, tetrachloroaurate anions (AuCl4−) are attached on the protonated imine sites of PANI, followed by a controlled reduction using cyclic voltammetry (CV). In contrast to previous work, we demonstrate that the reduction leads to the nucleation and growth of an Au nanoparticle (NP) whose density and size dispersion depend on the Au loading in PANI. Adding more deposition cycles increases the Au NP density and size. Transmission electron microscopy (TEM) and corresponding energy dispersive X-ray spectroscopy (EDS) indicate a homogeneous distribution of Au elements in the PANI matrix before CV reduction, while Au elements are aggregated and clearly localized in the NPs positions after CV reduction. We further use Rutherford backscattering spectrometry (RBS) to quantify the Au uptake in PANI. The Au distribution is verified to be initially homogeneous across the PANI layer whereas the increasing number of deposition cycles leads to a surface segregation of Au. We propose a two-step growth model based on our experimental results. Finally, we discuss the results with respect to the formation of atomic Au clusters reported previously using the same deposition method

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
ISSN: 2079-4991

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2023
Creator

DOI
10.3390/nano13142089
URN
urn:nbn:de:bsz:25-freidok-2380394
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:46 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2023

Other Objects (12)