Color transform analysis for microscale image segmentation to study halftone model parameters

Abstract: This article presents a comprehensive study of 30 color transforms to accurately segment images of halftone prints and thus calculating the parameters of a color prediction model. The transforms are evaluated combining three metrics: the model accuracy,Otsu’s discriminant, and correlation coefficients of histograms. Hierarchical cluster analysis is applied to determine the thresholds to segment the image histogram into paper, ink and mixed area. Among the 30 different transforms discussed in this article, 21 channels are of 7 color space models (RGB, CMYK, CIELAB, HSV, YIQ, YCbCr, and XYZ) and the other 9 channels are specially designed. Notable increase in model accuracy validates the segmentation accuracy and the necessity of choosing the appropriate transform. A set of 180 halftone images of different print properties (such as paper, halftone, ink and printing technology) has been used for the evaluation. It is found that, the most appropriate transform depends on the type of primary ink, but the corresponding transforms in CMYK color space model have shown consistent performance. CMYK-C, XYZ-Y and LAB-B are the best transforms for Cyan, Magenta and Yellow ink color respectively. YIQ-I and HSV-S are good candidates if a single transform is to be chosen for all primary ink colors.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Color transform analysis for microscale image segmentation to study halftone model parameters ; volume:6 ; number:1 ; year:2016 ; pages:148-167 ; extent:20
Open computer science ; 6, Heft 1 (2016), 148-167 (gesamt 20)

Urheber
Rahaman, G. M. Atiqur
Islam, Md. Zahidul

DOI
10.1515/comp-2016-0013
URN
urn:nbn:de:101:1-2410291758366.817905557881
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:32 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Rahaman, G. M. Atiqur
  • Islam, Md. Zahidul

Ähnliche Objekte (12)