AUTOMATIC ROAD CRACK RECOGNITION BASED ON DEEP LEARNING NETWORKS FROM UAV IMAGERY

Abstract. Roads are one of the essential transportation infrastructures that get damaged over time and affect economic development and social activities. Therefore, accurate and rapid recognition of road damage such as cracks is necessary to prevent further damage and repair it in time. The traditional methods for recognizing cracks are using survey vehicles equipped with various sensors, visual inspection of the road surface, and recognition algorithms in image processing. However, performing recognition operations using these methods is associated with high costs and low accuracy and speed. In recent years, the use of deep learning networks in object recognition and visual applications has increased, and these networks have become a suitable alternative to traditional methods. In this paper, the YOLOv4 deep learning network is used to recognize four types of cracks transverse, longitudinal, alligator, and oblique cracks utilizing a set of 2000 RGB visible images. The proposed network with multiple convolutional layers extracts accurate semantic feature maps from input images and classifies road cracks into four classes. This network performs the recognition process with an error of 1% in the training phase and 77% F1-Score, 80% precision, 80% mean average precision (mAP), 77% recall, and 81% intersection over union (IoU) in the testing phase. These results demonstrate the acceptable accuracy and appropriate performance of the model in road crack recognition.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
AUTOMATIC ROAD CRACK RECOGNITION BASED ON DEEP LEARNING NETWORKS FROM UAV IMAGERY ; volume:X-4/W1-2022 ; year:2023 ; pages:685-690 ; extent:6
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; X-4/W1-2022 (2023), 685-690 (gesamt 6)

Creator
Samadzadegan, F.
Dadrass Javan, F.
Hasanlou, M.
Gholamshahi, M.
Ashtari Mahini, F.

DOI
10.5194/isprs-annals-X-4-W1-2022-685-2023
URN
urn:nbn:de:101:1-2023011904393076864814
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:28 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Samadzadegan, F.
  • Dadrass Javan, F.
  • Hasanlou, M.
  • Gholamshahi, M.
  • Ashtari Mahini, F.

Other Objects (12)