Arbeitspapier

Regularized LIML for many instruments

The use of many moment conditions improves the asymptotic efficiency of the instrumental variables estimators. However, in finite samples, the inclusion of an excessive number of moments increases the bias. To solve this problem, we propose regularized versions of the limited information maximum likelihood (LIML) based on three different regularizations: Tikhonov, Landweber Fridman, and principal components. Our estimators are consistent and asymptotically normal under heteroskedastic error. Moreover, they reach the semiparametric efficiency bound assuming homoskedastic error. We show that the regularized LIML estimators possess finite moments when the sample size is large enough. The higher order expansion of the mean square error (MSE) shows the dominance of regularized LIML over regularized two-staged least squares estimators. We devise a data driven selection of the regularization parameter based on the approximate MSE. A Monte Carlo study and two empirical applications illustrate the relevance of our estimators.

Sprache
Englisch

Erschienen in
Series: School of Economics Discussion Papers ; No. 1515

Klassifikation
Wirtschaft
Estimation: General
Thema
heteroskedasticity
high-dimensional models
LIML
many instruments
MSE
regularization methods

Ereignis
Geistige Schöpfung
(wer)
Carrasco, Marine
Tchuente, Guy
Ereignis
Veröffentlichung
(wer)
University of Kent, School of Economics
(wo)
Canterbury
(wann)
2015

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Carrasco, Marine
  • Tchuente, Guy
  • University of Kent, School of Economics

Entstanden

  • 2015

Ähnliche Objekte (12)